Nuprl Lemma : ppcc-test3
∀[T:Type]
  ∀f:T ⟶ T
    ∀[Q,P:T ⟶ T ⟶ ℙ].
      ((∀a,b:T.  (Q[f[a];b] 
⇐⇒ P[a;f[b]]))
      
⇒ Trans(T;a,b.P[a;b])
      
⇒ (∀a,b,c,d,e,x:T.  (P[a;c] 
⇒ Q[d;b] 
⇒ P[a;e]) supposing ((f[b] = e ∈ T) and (f[x] = d ∈ T) and (c = x ∈ T))))
Proof
Definitions occuring in Statement : 
trans: Trans(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
equal_wf, 
trans_wf, 
all_wf, 
iff_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
productElimination, 
setEquality, 
equalityTransitivity, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[Q,P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
            ((\mforall{}a,b:T.    (Q[f[a];b]  \mLeftarrow{}{}\mRightarrow{}  P[a;f[b]]))
            {}\mRightarrow{}  Trans(T;a,b.P[a;b])
            {}\mRightarrow{}  (\mforall{}a,b,c,d,e,x:T.
                        (P[a;c]  {}\mRightarrow{}  Q[d;b]  {}\mRightarrow{}  P[a;e])  supposing  ((f[b]  =  e)  and  (f[x]  =  d)  and  (c  =  x))))
Date html generated:
2016_10_25-AM-10_43_39
Last ObjectModification:
2016_07_12-AM-06_53_57
Theory : general
Home
Index