Nuprl Lemma : ppcc-test3

[T:Type]
  ∀f:T ⟶ T
    ∀[Q,P:T ⟶ T ⟶ ℙ].
      ((∀a,b:T.  (Q[f[a];b] ⇐⇒ P[a;f[b]]))
       Trans(T;a,b.P[a;b])
       (∀a,b,c,d,e,x:T.  (P[a;c]  Q[d;b]  P[a;e]) supposing ((f[b] e ∈ T) and (f[x] d ∈ T) and (c x ∈ T))))


Proof




Definitions occuring in Statement :  trans: Trans(T;x,y.E[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T prop: so_apply: x[s1;s2] so_apply: x[s] so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] guard: {T} and: P ∧ Q iff: ⇐⇒ Q trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  equal_wf trans_wf all_wf iff_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename applyEquality functionExtensionality hypothesisEquality cumulativity extract_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality functionEquality universeEquality hyp_replacement equalitySymmetry dependent_set_memberEquality independent_pairFormation setElimination productElimination setEquality equalityTransitivity dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[Q,P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
            ((\mforall{}a,b:T.    (Q[f[a];b]  \mLeftarrow{}{}\mRightarrow{}  P[a;f[b]]))
            {}\mRightarrow{}  Trans(T;a,b.P[a;b])
            {}\mRightarrow{}  (\mforall{}a,b,c,d,e,x:T.
                        (P[a;c]  {}\mRightarrow{}  Q[d;b]  {}\mRightarrow{}  P[a;e])  supposing  ((f[b]  =  e)  and  (f[x]  =  d)  and  (c  =  x))))



Date html generated: 2016_10_25-AM-10_43_39
Last ObjectModification: 2016_07_12-AM-06_53_57

Theory : general


Home Index