Nuprl Lemma : simplify-equal-imp
∀[T:Type]. ∀[x,y,z:T].  uiff(x = z ∈ T supposing x = y ∈ T;¬(x = y ∈ T)) supposing ¬(y = z ∈ T)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
isect_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
productElimination, 
independent_pairEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x,y,z:T].    uiff(x  =  z  supposing  x  =  y;\mneg{}(x  =  y))  supposing  \mneg{}(y  =  z)
Date html generated:
2018_05_21-PM-06_32_49
Last ObjectModification:
2017_07_26-PM-04_51_50
Theory : general
Home
Index