Nuprl Lemma : simplify-equal-imp

[T:Type]. ∀[x,y,z:T].  uiff(x z ∈ supposing y ∈ T;¬(x y ∈ T)) supposing ¬(y z ∈ T)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf isect_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin sqequalHypSubstitution independent_isectElimination hypothesis independent_functionElimination equalitySymmetry equalityTransitivity voidElimination extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache isect_memberEquality axiomEquality productElimination independent_pairEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y,z:T].    uiff(x  =  z  supposing  x  =  y;\mneg{}(x  =  y))  supposing  \mneg{}(y  =  z)



Date html generated: 2018_05_21-PM-06_32_49
Last ObjectModification: 2017_07_26-PM-04_51_50

Theory : general


Home Index