Nuprl Lemma : slow-int-palindrome-test_wf

[L:ℤ List]. (slow-int-palindrome-test(L) ∈ 𝔹)


Proof




Definitions occuring in Statement :  slow-int-palindrome-test: slow-int-palindrome-test(L) list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T slow-int-palindrome-test: slow-int-palindrome-test(L) subtype_rel: A ⊆B deq: EqDecider(T)
Lemmas referenced :  list-deq_wf int-deq_wf deq_wf list_wf reverse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis lambdaEquality setElimination rename hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:\mBbbZ{}  List].  (slow-int-palindrome-test(L)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-07_38_41
Last ObjectModification: 2015_12_27-AM-11_15_47

Theory : general


Home Index