Nuprl Lemma : special-mod4-decomp_wf

[m:ℤ]
  (special-mod4-decomp(m) ∈ {p:ℤ × {-2..3-}| let k,b in (m ((4 k) b) ∈ ℤ) ∧ ((|b| 2 ∈ ℤ (↑isEven(k)))} )


Proof




Definitions occuring in Statement :  special-mod4-decomp: special-mod4-decomp(m) isEven: isEven(n) absval: |i| int_seg: {i..j-} assert: b uall: [x:A]. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  spread: spread def product: x:A × B[x] multiply: m add: m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T special-mod4-decomp: special-mod4-decomp(m) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q int_seg: {i..j-} implies:  Q so_apply: x[s] sq_exists: x:A [B[x]] nat:
Lemmas referenced :  sparse-signed-rep-lemma1-ext subtype_rel_self sq_exists_wf int_seg_wf equal-wf-base-T int_subtype_base equal-wf-T-base absval_wf assert_wf isEven_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality thin instantiate extract_by_obid hypothesis sqequalHypSubstitution isectElimination functionEquality intEquality productEquality minusEquality natural_numberEquality lambdaEquality spreadEquality hypothesisEquality addEquality multiplyEquality setElimination rename because_Cache baseClosed setEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[m:\mBbbZ{}]
    (special-mod4-decomp(m)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \{-2..3\msupminus{}\}| 
                                                          let  k,b  =  p 
                                                          in  (m  =  ((4  *  k)  +  b))  \mwedge{}  ((|b|  =  2)  {}\mRightarrow{}  (\muparrow{}isEven(k)))\}  )



Date html generated: 2018_05_21-PM-08_33_55
Last ObjectModification: 2018_05_19-PM-05_05_26

Theory : general


Home Index