Nuprl Lemma : special-mod4-decomp_wf
∀[m:ℤ]
  (special-mod4-decomp(m) ∈ {p:ℤ × {-2..3-}| let k,b = p in (m = ((4 * k) + b) ∈ ℤ) ∧ ((|b| = 2 ∈ ℤ) 
⇒ (↑isEven(k)))} )
Proof
Definitions occuring in Statement : 
special-mod4-decomp: special-mod4-decomp(m)
, 
isEven: isEven(n)
, 
absval: |i|
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
spread: spread def, 
product: x:A × B[x]
, 
multiply: n * m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
special-mod4-decomp: special-mod4-decomp(m)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
nat: ℕ
Lemmas referenced : 
sparse-signed-rep-lemma1-ext, 
subtype_rel_self, 
sq_exists_wf, 
int_seg_wf, 
equal-wf-base-T, 
int_subtype_base, 
equal-wf-T-base, 
absval_wf, 
assert_wf, 
isEven_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
intEquality, 
productEquality, 
minusEquality, 
natural_numberEquality, 
lambdaEquality, 
spreadEquality, 
hypothesisEquality, 
addEquality, 
multiplyEquality, 
setElimination, 
rename, 
because_Cache, 
baseClosed, 
setEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[m:\mBbbZ{}]
    (special-mod4-decomp(m)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \{-2..3\msupminus{}\}| 
                                                          let  k,b  =  p 
                                                          in  (m  =  ((4  *  k)  +  b))  \mwedge{}  ((|b|  =  2)  {}\mRightarrow{}  (\muparrow{}isEven(k)))\}  )
Date html generated:
2018_05_21-PM-08_33_55
Last ObjectModification:
2018_05_19-PM-05_05_26
Theory : general
Home
Index