Nuprl Lemma : sq_stable__sublist
∀[T:Type]. ∀l1,l2:T List.  ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ SqStable(l1 ⊆ l2))
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
list: T List
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
list_wf, 
equal_wf, 
decidable_wf, 
all_wf, 
sublist_wf, 
sublist-rec_wf, 
squash_wf, 
sq_stable__sublist-rec, 
sublist-rec-iff-sublist
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
addLevel, 
imageElimination, 
introduction, 
because_Cache, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
levelHypothesis, 
promote_hyp, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  SqStable(l1  \msubseteq{}  l2))
Date html generated:
2016_05_15-PM-03_34_14
Last ObjectModification:
2016_01_16-AM-10_49_20
Theory : general
Home
Index