Nuprl Lemma : sublist-rec-iff-sublist

[T:Type]. ∀l1,l2:T List.  (l1 ⊆ l2 ⇐⇒ sublist-rec(T;l1;l2))


Proof




Definitions occuring in Statement :  sublist-rec: sublist-rec(T;l1;l2) sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q iff: ⇐⇒ Q and: P ∧ Q prop: rev_implies:  Q or: P ∨ Q sublist-rec: sublist-rec(T;l1;l2) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] true: True cons: [a b] false: False cand: c∧ B guard: {T}
Lemmas referenced :  list_induction all_wf list_wf iff_wf sublist_wf sublist-rec_wf nil_wf sublist_nil cons_wf list-cases list_ind_nil_lemma product_subtype_list cons_sublist_nil list_ind_cons_lemma cons_sublist_cons and_wf equal_wf nil_sublist
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_functionElimination independent_pairFormation because_Cache dependent_functionElimination productElimination rename universeEquality unionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality promote_hyp hypothesis_subsumption inlFormation inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    (l1  \msubseteq{}  l2  \mLeftarrow{}{}\mRightarrow{}  sublist-rec(T;l1;l2))



Date html generated: 2016_05_15-PM-03_34_01
Last ObjectModification: 2015_12_27-PM-01_13_18

Theory : general


Home Index