Nuprl Lemma : sublist-rec-iff-sublist
∀[T:Type]. ∀l1,l2:T List.  (l1 ⊆ l2 
⇐⇒ sublist-rec(T;l1;l2))
Proof
Definitions occuring in Statement : 
sublist-rec: sublist-rec(T;l1;l2)
, 
sublist: L1 ⊆ L2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
sublist-rec: sublist-rec(T;l1;l2)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
true: True
, 
cons: [a / b]
, 
false: False
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
iff_wf, 
sublist_wf, 
sublist-rec_wf, 
nil_wf, 
sublist_nil, 
cons_wf, 
list-cases, 
list_ind_nil_lemma, 
product_subtype_list, 
cons_sublist_nil, 
list_ind_cons_lemma, 
cons_sublist_cons, 
and_wf, 
equal_wf, 
nil_sublist
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
dependent_functionElimination, 
productElimination, 
rename, 
universeEquality, 
unionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    (l1  \msubseteq{}  l2  \mLeftarrow{}{}\mRightarrow{}  sublist-rec(T;l1;l2))
Date html generated:
2016_05_15-PM-03_34_01
Last ObjectModification:
2015_12_27-PM-01_13_18
Theory : general
Home
Index