Nuprl Lemma : strict-fun-connected-induction
∀[T:Type]
  ∀f:T ⟶ T
    ∀[R:T ⟶ T ⟶ ℙ]
      ((∀x,y,z:T.  (y is f*(z) 
⇒ (R[y;z] ∨ (y = z ∈ T)) 
⇒ R[x;z]) supposing ((¬(x = y ∈ T)) and (x = (f y) ∈ T)))
      
⇒ {∀x,y:T.  (x = f+(y) 
⇒ R[x;y])})
Proof
Definitions occuring in Statement : 
strict-fun-connected: y = f+(x)
, 
fun-connected: y is f*(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
or: P ∨ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
strict-fun-connected: y = f+(x)
, 
and: P ∧ Q
Lemmas referenced : 
fun-connected-induction, 
or_wf, 
equal_wf, 
fun-connected_wf, 
not_wf, 
all_wf, 
isect_wf, 
strict-fun-connected_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
inrFormation, 
because_Cache, 
axiomEquality, 
rename, 
voidElimination, 
inlFormation, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
unionElimination, 
productElimination, 
equalitySymmetry
Latex:
\mforall{}[T:Type]
    \mforall{}f:T  {}\mrightarrow{}  T
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}x,y,z:T.
                    (y  is  f*(z)  {}\mRightarrow{}  (R[y;z]  \mvee{}  (y  =  z))  {}\mRightarrow{}  R[x;z])  supposing  ((\mneg{}(x  =  y))  and  (x  =  (f  y))))
            {}\mRightarrow{}  \{\mforall{}x,y:T.    (x  =  f+(y)  {}\mRightarrow{}  R[x;y])\})
Date html generated:
2018_05_21-PM-07_45_27
Last ObjectModification:
2017_07_26-PM-05_22_51
Theory : general
Home
Index