Nuprl Lemma : tl_sublist

[T:Type]. ∀a:T. ∀L1,L2:T List.  ([a L1] ⊆ L2  L1 ⊆ L2)


Proof




Definitions occuring in Statement :  sublist: L1 ⊆ L2 cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a assert: b ifthenelse: if then else fi  bfalse: ff not: ¬A false: False prop:
Lemmas referenced :  sublist_transitivity cons_wf sublist_tl null_cons_lemma istype-void reduce_tl_cons_lemma sublist_weakening sublist_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis independent_functionElimination because_Cache independent_isectElimination sqequalRule Error :memTop,  voidElimination universeIsType instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}a:T.  \mforall{}L1,L2:T  List.    ([a  /  L1]  \msubseteq{}  L2  {}\mRightarrow{}  L1  \msubseteq{}  L2)



Date html generated: 2020_05_20-AM-08_07_07
Last ObjectModification: 2020_01_28-PM-04_19_24

Theory : general


Home Index