Nuprl Lemma : tl_sublist
∀[T:Type]. ∀a:T. ∀L1,L2:T List.  ([a / L1] ⊆ L2 
⇒ L1 ⊆ L2)
Proof
Definitions occuring in Statement : 
sublist: L1 ⊆ L2
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
not: ¬A
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
sublist_transitivity, 
cons_wf, 
sublist_tl, 
null_cons_lemma, 
istype-void, 
reduce_tl_cons_lemma, 
sublist_weakening, 
sublist_wf, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
Error :memTop, 
voidElimination, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}a:T.  \mforall{}L1,L2:T  List.    ([a  /  L1]  \msubseteq{}  L2  {}\mRightarrow{}  L1  \msubseteq{}  L2)
Date html generated:
2020_05_20-AM-08_07_07
Last ObjectModification:
2020_01_28-PM-04_19_24
Theory : general
Home
Index