Nuprl Lemma : trivial-record-update

[r,z:Top].  (r[z := r.z] ~ λx.if =a then else fi )


Proof




Definitions occuring in Statement :  record-update: r[x := v] record-select: r.x ifthenelse: if then else fi  eq_atom: =a y uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T record-select: r.x record-update: r[x := v] eq_atom: =a y ifthenelse: if then else fi  btrue: tt bfalse: ff it: so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T
Lemmas referenced :  lifting-strict-atom_eq top_wf equal_wf has-value_wf_base base_wf is-exception_wf atom_eq_sq_normalize
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueDecide hypothesis hypothesisEquality equalityTransitivity equalitySymmetry unionEquality unionElimination sqleReflexivity dependent_functionElimination independent_functionElimination baseApply closedConclusion decideExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation instantiate rename sqequalAxiom

Latex:
\mforall{}[r,z:Top].    (r[z  :=  r.z]  \msim{}  \mlambda{}x.if  x  =a  z  then  r  x  else  r  x  fi  )



Date html generated: 2018_05_21-PM-08_40_04
Last ObjectModification: 2017_07_26-PM-06_04_09

Theory : general


Home Index