Nuprl Lemma : trivial-record-update
∀[r,z:Top].  (r[z := r.z] ~ λx.if x =a z then r x else r x fi )
Proof
Definitions occuring in Statement : 
record-update: r[x := v]
, 
record-select: r.x
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
record-select: r.x
, 
record-update: r[x := v]
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
it: ⋅
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
Lemmas referenced : 
lifting-strict-atom_eq, 
top_wf, 
equal_wf, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
atom_eq_sq_normalize
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueDecide, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
decideExceptionCases, 
inrFormation, 
because_Cache, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
instantiate, 
rename, 
sqequalAxiom
Latex:
\mforall{}[r,z:Top].    (r[z  :=  r.z]  \msim{}  \mlambda{}x.if  x  =a  z  then  r  x  else  r  x  fi  )
Date html generated:
2018_05_21-PM-08_40_04
Last ObjectModification:
2017_07_26-PM-06_04_09
Theory : general
Home
Index