Nuprl Lemma : ts-stable-rel_wf
∀[ts:transition-system{i:l}]. ∀[R:ts-type(ts) ⟶ ts-type(ts) ⟶ ℙ].  (ts-stable-rel(ts;x,y.R[x;y]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
ts-stable-rel: ts-stable-rel(ts;x,y.R[x; y])
, 
ts-type: ts-type(ts)
, 
transition-system: transition-system{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ts-stable-rel: ts-stable-rel(ts;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
ts-type_wf, 
rel_star_wf, 
ts-rel_wf, 
transition-system_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[ts:transition-system\{i:l\}].  \mforall{}[R:ts-type(ts)  {}\mrightarrow{}  ts-type(ts)  {}\mrightarrow{}  \mBbbP{}].
    (ts-stable-rel(ts;x,y.R[x;y])  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-05_43_18
Last ObjectModification:
2015_12_27-PM-00_30_33
Theory : general
Home
Index