Nuprl Lemma : uall-union
∀[A,B:Type]. ∀P:(A + B) ⟶ ℙ. ((∀[x:A + B]. P[x])
⇒ ((∀[a:A]. P[inl a]) ∧ (∀[b:B]. P[inr b ])))
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
inr: inr x
,
inl: inl x
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
cand: A c∧ B
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
guard: {T}
Lemmas referenced :
uall_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
hypothesisEquality,
independent_pairFormation,
hypothesis,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
unionEquality,
sqequalRule,
lambdaEquality,
applyEquality,
functionEquality,
cumulativity,
universeEquality,
inlEquality,
inrEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}P:(A + B) {}\mrightarrow{} \mBbbP{}. ((\mforall{}[x:A + B]. P[x]) {}\mRightarrow{} ((\mforall{}[a:A]. P[inl a]) \mwedge{} (\mforall{}[b:B]. P[inr b ])))
Date html generated:
2016_05_15-PM-03_24_45
Last ObjectModification:
2015_12_27-PM-01_06_11
Theory : general
Home
Index