Nuprl Lemma : un-zip_wf
∀[A,B:Type]. ∀[as:(A × B) List].  (un-zip(as) ∈ A List × (B List))
Proof
Definitions occuring in Statement : 
un-zip: un-zip(as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
un-zip: un-zip(as)
Lemmas referenced : 
reduce_wf, 
list_wf, 
cons_wf, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
spreadEquality, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[as:(A  \mtimes{}  B)  List].    (un-zip(as)  \mmember{}  A  List  \mtimes{}  (B  List))
Date html generated:
2016_05_15-PM-03_57_53
Last ObjectModification:
2015_12_27-PM-03_07_41
Theory : general
Home
Index