Nuprl Lemma : un-zip_wf

[A,B:Type]. ∀[as:(A × B) List].  (un-zip(as) ∈ List × (B List))


Proof




Definitions occuring in Statement :  un-zip: un-zip(as) list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T un-zip: un-zip(as)
Lemmas referenced :  reduce_wf list_wf cons_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis lambdaEquality spreadEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[as:(A  \mtimes{}  B)  List].    (un-zip(as)  \mmember{}  A  List  \mtimes{}  (B  List))



Date html generated: 2016_05_15-PM-03_57_53
Last ObjectModification: 2015_12_27-PM-03_07_41

Theory : general


Home Index