Nuprl Lemma : urec-is-fixedpoint
∀[F:Type ⟶ Type]. F urec(F) ≡ urec(F) supposing continuous'-monotone{i:l}(T.F T)
Proof
Definitions occuring in Statement : 
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
, 
urec: urec(F)
, 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
subtype_urec, 
urec_subtype, 
continuous'-monotone_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
sqequalRule, 
independent_pairEquality, 
axiomEquality, 
lambdaEquality, 
applyEquality, 
universeEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  F  urec(F)  \mequiv{}  urec(F)  supposing  continuous'-monotone\{i:l\}(T.F  T)
Date html generated:
2016_05_15-PM-06_54_38
Last ObjectModification:
2015_12_27-AM-11_41_23
Theory : general
Home
Index