Nuprl Lemma : urec-is-fixedpoint

[F:Type ⟶ Type]. urec(F) ≡ urec(F) supposing continuous'-monotone{i:l}(T.F T)


Proof




Definitions occuring in Statement :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) urec: urec(F) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x]
Lemmas referenced :  subtype_urec urec_subtype continuous'-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination sqequalRule independent_pairEquality axiomEquality lambdaEquality applyEquality universeEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  F  urec(F)  \mequiv{}  urec(F)  supposing  continuous'-monotone\{i:l\}(T.F  T)



Date html generated: 2016_05_15-PM-06_54_38
Last ObjectModification: 2015_12_27-AM-11_41_23

Theory : general


Home Index