Nuprl Lemma : subtype_urec

[F:Type ⟶ Type]. (F urec(F)) ⊆urec(F) supposing continuous'-monotone{i:l}(T.F T)


Proof




Definitions occuring in Statement :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) urec: urec(F) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) and: P ∧ Q type-continuous': semi-continuous(λT.F[T]) all: x:A. B[x] implies:  Q urec: urec(F) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: tunion: x:A.B[x] pi2: snd(t) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top
Lemmas referenced :  monotone-incr-chain subtype_rel_transitivity urec_wf tunion_wf nat_wf fun_exp_wf istype-nat continuous'-monotone_wf istype-universe nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtype_rel-equal fun_exp_apply_add1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin isectElimination extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis sqequalRule applyEquality lambdaEquality_alt instantiate closedConclusion universeEquality because_Cache voidEquality independent_isectElimination axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType imageElimination imageMemberEquality dependent_pairEquality_alt dependent_set_memberEquality_alt addEquality setElimination rename natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination independent_pairFormation baseClosed equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  (F  urec(F))  \msubseteq{}r  urec(F)  supposing  continuous'-monotone\{i:l\}(T.F  T)



Date html generated: 2019_10_15-AM-11_30_20
Last ObjectModification: 2018_10_31-PM-02_25_26

Theory : general


Home Index