Nuprl Lemma : monotone-incr-chain

F:Type ⟶ Type. (Monotone(T.F T)  n.(F^n Void) ∈ type-incr-chain{i:l}()))


Proof




Definitions occuring in Statement :  type-incr-chain: type-incr-chain{i:l}() type-monotone: Monotone(T.F[T]) fun_exp: f^n all: x:A. B[x] implies:  Q member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] void: Void universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a so_apply: x[s] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q prop: type-incr-chain: type-incr-chain{i:l}() so_lambda: λ2x.t[x]
Lemmas referenced :  type-monotone_wf subtype_rel_wf all_wf fun_exp_wf nat_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties type-monotone-fun_exp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache applyEquality instantiate universeEquality functionEquality

Latex:
\mforall{}F:Type  {}\mrightarrow{}  Type.  (Monotone(T.F  T)  {}\mRightarrow{}  (\mlambda{}n.(F\^{}n  Void)  \mmember{}  type-incr-chain\{i:l\}()))



Date html generated: 2016_05_15-PM-06_52_03
Last ObjectModification: 2016_01_16-AM-09_49_53

Theory : general


Home Index