Nuprl Lemma : urec_subtype
∀[F:Type ⟶ Type]. urec(F) ⊆r (F urec(F)) supposing Monotone(T.F[T])
Proof
Definitions occuring in Statement : 
urec: urec(F)
, 
type-monotone: Monotone(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
urec: urec(F)
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
top: Top
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
, 
union-continuous: union-continuous{i:l}(T.F[T])
Lemmas referenced : 
subtype_rel_transitivity, 
urec_wf, 
tunion_wf, 
nat_wf, 
fun_exp_wf, 
istype-nat, 
type-monotone_wf, 
istype-universe, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
fun_exp0_lemma, 
istype-void, 
subtract_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
istype-le, 
subtype_rel-equal, 
fun_exp_add1_sub, 
decidable__lt, 
istype-false, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
istype-less_than, 
type-monotone-union-continuous
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
instantiate, 
closedConclusion, 
universeEquality, 
because_Cache, 
voidEquality, 
independent_isectElimination, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
imageElimination, 
productElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
cumulativity, 
intEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
imageMemberEquality, 
dependent_pairEquality_alt, 
dependent_set_memberEquality_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
lambdaFormation_alt, 
addEquality, 
minusEquality, 
baseClosed, 
lambdaEquality, 
lemma_by_obid
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  urec(F)  \msubseteq{}r  (F  urec(F))  supposing  Monotone(T.F[T])
Date html generated:
2019_10_15-AM-11_30_03
Last ObjectModification:
2018_10_31-PM-02_25_38
Theory : general
Home
Index