Nuprl Lemma : urec_subtype

[F:Type ⟶ Type]. urec(F) ⊆(F urec(F)) supposing Monotone(T.F[T])


Proof




Definitions occuring in Statement :  urec: urec(F) type-monotone: Monotone(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: urec: urec(F) tunion: x:A.B[x] pi2: snd(t) all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} top: Top ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q nat_plus: + le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) less_than': less_than'(a;b) true: True subtract: m union-continuous: union-continuous{i:l}(T.F[T])
Lemmas referenced :  subtype_rel_transitivity urec_wf tunion_wf nat_wf fun_exp_wf istype-nat type-monotone_wf istype-universe decidable__equal_int subtype_base_sq int_subtype_base fun_exp0_lemma istype-void subtract_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf istype-le subtype_rel-equal fun_exp_add1_sub decidable__lt istype-false not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero istype-less_than type-monotone-union-continuous
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality_alt applyEquality instantiate closedConclusion universeEquality because_Cache voidEquality independent_isectElimination axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType imageElimination productElimination dependent_functionElimination setElimination rename natural_numberEquality unionElimination cumulativity intEquality independent_functionElimination equalityTransitivity equalitySymmetry voidElimination imageMemberEquality dependent_pairEquality_alt dependent_set_memberEquality_alt approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation lambdaFormation_alt addEquality minusEquality baseClosed lambdaEquality lemma_by_obid

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  urec(F)  \msubseteq{}r  (F  urec(F))  supposing  Monotone(T.F[T])



Date html generated: 2019_10_15-AM-11_30_03
Last ObjectModification: 2018_10_31-PM-02_25_38

Theory : general


Home Index