Nuprl Lemma : wellfounded-anti-reflexive

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[a:T]. R[a;a]) supposing WellFnd{i}(T;x,y.R[x;y])


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False wellfounded: WellFnd{i}(A;x,y.R[x; y]) so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] prop: guard: {T} subtype_rel: A ⊆B so_lambda: λ2y.t[x; y]
Lemmas referenced :  not_wf all_wf wellfounded_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution isectElimination sqequalRule lambdaEquality lemma_by_obid applyEquality hypothesisEquality independent_functionElimination functionEquality because_Cache dependent_functionElimination voidElimination universeEquality isect_memberEquality equalityTransitivity equalitySymmetry cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[a:T].  (\mneg{}R[a;a])  supposing  WellFnd\{i\}(T;x,y.R[x;y])



Date html generated: 2016_05_15-PM-03_56_16
Last ObjectModification: 2015_12_27-PM-03_09_10

Theory : general


Home Index