Nuprl Lemma : wellfounded-anti-reflexive
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀[a:T]. (¬R[a;a]) supposing WellFnd{i}(T;x,y.R[x;y])
Proof
Definitions occuring in Statement : 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
not_wf, 
all_wf, 
wellfounded_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
functionEquality, 
because_Cache, 
dependent_functionElimination, 
voidElimination, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[a:T].  (\mneg{}R[a;a])  supposing  WellFnd\{i\}(T;x,y.R[x;y])
Date html generated:
2016_05_15-PM-03_56_16
Last ObjectModification:
2015_12_27-PM-03_09_10
Theory : general
Home
Index