Nuprl Lemma : dlattice-eq-equiv

[X:Type]. EquivRel(X List List;as,bs.dlattice-eq(X;as;bs))


Proof




Definitions occuring in Statement :  dlattice-eq: dlattice-eq(X;as;bs) list: List equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] dlattice-eq: dlattice-eq(X;as;bs) cand: c∧ B member: t ∈ T sym: Sym(T;x,y.E[x; y]) implies:  Q prop: trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  list_wf dlattice-order_wf dlattice-order_weakening dlattice-order_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule productElimination productEquality because_Cache universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[X:Type].  EquivRel(X  List  List;as,bs.dlattice-eq(X;as;bs))



Date html generated: 2020_05_20-AM-08_26_44
Last ObjectModification: 2017_01_21-PM-04_06_14

Theory : lattices


Home Index