Nuprl Lemma : dlattice-eq-equiv
∀[X:Type]. EquivRel(X List List;as,bs.dlattice-eq(X;as;bs))
Proof
Definitions occuring in Statement : 
dlattice-eq: dlattice-eq(X;as;bs)
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
dlattice-eq: dlattice-eq(X;as;bs)
, 
cand: A c∧ B
, 
member: t ∈ T
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
list_wf, 
dlattice-order_wf, 
dlattice-order_weakening, 
dlattice-order_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
productElimination, 
productEquality, 
because_Cache, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[X:Type].  EquivRel(X  List  List;as,bs.dlattice-eq(X;as;bs))
Date html generated:
2020_05_20-AM-08_26_44
Last ObjectModification:
2017_01_21-PM-04_06_14
Theory : lattices
Home
Index