Nuprl Lemma : dlattice-order_transitivity
∀[X:Type]. ∀as,bs,cs:X List List.  (as 
⇒ bs 
⇒ bs 
⇒ cs 
⇒ as 
⇒ cs)
Proof
Definitions occuring in Statement : 
dlattice-order: as 
⇒ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
dlattice-order: as 
⇒ bs
, 
l_all: (∀x∈L.P[x])
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
dlattice-order_wf, 
list_wf, 
int_seg_wf, 
length_wf, 
l_contains_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
l_contains_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
rename, 
natural_numberEquality, 
dependent_pairFormation, 
because_Cache, 
setElimination, 
independent_isectElimination, 
unionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination
Latex:
\mforall{}[X:Type].  \mforall{}as,bs,cs:X  List  List.    (as  {}\mRightarrow{}  bs  {}\mRightarrow{}  bs  {}\mRightarrow{}  cs  {}\mRightarrow{}  as  {}\mRightarrow{}  cs)
Date html generated:
2020_05_20-AM-08_26_33
Last ObjectModification:
2017_01_21-PM-03_59_35
Theory : lattices
Home
Index