Nuprl Lemma : dlattice-order_transitivity

[X:Type]. ∀as,bs,cs:X List List.  (as  bs  bs  cs  as  cs)


Proof




Definitions occuring in Statement :  dlattice-order: as  bs list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: dlattice-order: as  bs l_all: (∀x∈L.P[x]) l_exists: (∃x∈L. P[x]) exists: x:A. B[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T
Lemmas referenced :  dlattice-order_wf list_wf int_seg_wf length_wf l_contains_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma l_contains_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis universeEquality dependent_functionElimination productElimination rename natural_numberEquality dependent_pairFormation because_Cache setElimination independent_isectElimination unionElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll imageElimination independent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}as,bs,cs:X  List  List.    (as  {}\mRightarrow{}  bs  {}\mRightarrow{}  bs  {}\mRightarrow{}  cs  {}\mRightarrow{}  as  {}\mRightarrow{}  cs)



Date html generated: 2020_05_20-AM-08_26_33
Last ObjectModification: 2017_01_21-PM-03_59_35

Theory : lattices


Home Index