Nuprl Lemma : dlattice-order_weakening

[X:Type]. ∀as,bs:X List List.  ((as bs ∈ (X List List))  as  bs)


Proof




Definitions occuring in Statement :  dlattice-order: as  bs list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q dlattice-order: as  bs l_all: (∀x∈L.P[x]) l_exists: (∃x∈L. P[x]) exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b
Lemmas referenced :  dlattice-order_wf squash_wf true_wf iff_weakening_equal l_contains_weakening select_wf list_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma l_contains_wf int_seg_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination dependent_pairFormation dependent_functionElimination cumulativity setElimination rename unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[X:Type].  \mforall{}as,bs:X  List  List.    ((as  =  bs)  {}\mRightarrow{}  as  {}\mRightarrow{}  bs)



Date html generated: 2020_05_20-AM-08_26_35
Last ObjectModification: 2017_01_21-PM-04_00_13

Theory : lattices


Home Index