Nuprl Lemma : fl-vertex_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[u:T + T].  (fl-vertex(u) ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
fl-vertex: fl-vertex(u)
, 
face-lattice: face-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fl-vertex: fl-vertex(u)
, 
face-lattice0: (x=0)
, 
face-lattice1: (x=1)
Lemmas referenced : 
deq_wf, 
face-lattice1_wf, 
face-lattice0_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
unionElimination, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[u:T  +  T].    (fl-vertex(u)  \mmember{}  Point(face-lattice(T;eq)))
Date html generated:
2020_05_20-AM-08_51_27
Last ObjectModification:
2016_01_19-PM-05_18_44
Theory : lattices
Home
Index