Nuprl Lemma : free-dl-type_wf
∀[X:Type]. (free-dl-type(X) ∈ Type)
Proof
Definitions occuring in Statement : 
free-dl-type: free-dl-type(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
free-dl-type: free-dl-type(X)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
quotient_wf, 
list_wf, 
dlattice-eq_wf, 
dlattice-eq-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[X:Type].  (free-dl-type(X)  \mmember{}  Type)
Date html generated:
2020_05_20-AM-08_26_47
Last ObjectModification:
2017_01_21-PM-04_11_00
Theory : lattices
Home
Index