Nuprl Lemma : free-dl-type_wf

[X:Type]. (free-dl-type(X) ∈ Type)


Proof




Definitions occuring in Statement :  free-dl-type: free-dl-type(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dl-type: free-dl-type(X) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf list_wf dlattice-eq_wf dlattice-eq-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type].  (free-dl-type(X)  \mmember{}  Type)



Date html generated: 2020_05_20-AM-08_26_47
Last ObjectModification: 2017_01_21-PM-04_11_00

Theory : lattices


Home Index