Nuprl Lemma : lattice-ble_wf
∀[l:LatticeStructure]. ∀[eq:EqDecider(Point(l))]. ∀[a,b:Point(l)].  (lattice-ble(l;eq;a;b) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
lattice-ble: lattice-ble(l;eq;a;b)
, 
lattice-point: Point(l)
, 
lattice-structure: LatticeStructure
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-ble: lattice-ble(l;eq;a;b)
, 
deq: EqDecider(T)
Lemmas referenced : 
lattice-meet_wf, 
lattice-point_wf, 
deq_wf, 
lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[l:LatticeStructure].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[a,b:Point(l)].    (lattice-ble(l;eq;a;b)  \mmember{}  \mBbbB{})
Date html generated:
2020_05_20-AM-08_43_06
Last ObjectModification:
2015_12_28-PM-02_01_45
Theory : lattices
Home
Index