Nuprl Lemma : append_rel_wf

[T:Type]. ∀[L1,L2,L:T List].  (append_rel(T;L1;L2;L) ∈ ℙ)


Proof




Definitions occuring in Statement :  append_rel: append_rel(T;L1;L2;L) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append_rel: append_rel(T;L1;L2;L)
Lemmas referenced :  equal_wf list_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality because_Cache universeIsType universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2,L:T  List].    (append\_rel(T;L1;L2;L)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_15-AM-10_54_02
Last ObjectModification: 2018_09_27-AM-09_41_16

Theory : list!


Home Index