Nuprl Lemma : append_rel_wf
∀[T:Type]. ∀[L1,L2,L:T List].  (append_rel(T;L1;L2;L) ∈ ℙ)
Proof
Definitions occuring in Statement : 
append_rel: append_rel(T;L1;L2;L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
append_rel: append_rel(T;L1;L2;L)
Lemmas referenced : 
equal_wf, 
list_wf, 
append_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality, 
because_Cache, 
universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2,L:T  List].    (append\_rel(T;L1;L2;L)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_54_02
Last ObjectModification:
2018_09_27-AM-09_41_16
Theory : list!
Home
Index