Nuprl Lemma : sublist*_wf
∀[T:Type]. ∀[as,bs:T List]. (sublist*(T;as;bs) ∈ ℙ)
Proof
Definitions occuring in Statement :
sublist*: sublist*(T;as;bs)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
sublist*: sublist*(T;as;bs)
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
all_wf,
list_wf,
sublist_wf,
l_subset_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
functionEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
inhabitedIsType,
isect_memberEquality,
universeIsType,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[as,bs:T List]. (sublist*(T;as;bs) \mmember{} \mBbbP{})
Date html generated:
2019_10_15-AM-10_58_35
Last ObjectModification:
2018_09_27-AM-09_38_55
Theory : list!
Home
Index