Nuprl Lemma : sublist*_wf
∀[T:Type]. ∀[as,bs:T List].  (sublist*(T;as;bs) ∈ ℙ)
Proof
Definitions occuring in Statement : 
sublist*: sublist*(T;as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sublist*: sublist*(T;as;bs)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
list_wf, 
sublist_wf, 
l_subset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality, 
universeIsType, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (sublist*(T;as;bs)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_58_35
Last ObjectModification:
2018_09_27-AM-09_38_55
Theory : list!
Home
Index