Nuprl Lemma : diagonal-matrix_wf

[r:RngSig]. ∀[n:ℕ]. ∀[F:ℕn ⟶ |r|].  (diagonal-matrix(r;i.F[i]) ∈ Matrix(n;n;r))


Proof




Definitions occuring in Statement :  diagonal-matrix: diagonal-matrix(r;x.F[x]) matrix: Matrix(n;m;r) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  so_apply: x[s1;s2] not: ¬A implies:  Q false: False so_apply: x[s] int_seg: {i..j-} so_lambda: λ2y.t[x; y] nat: diagonal-matrix: diagonal-matrix(r;x.F[x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf nat_wf rng_car_wf rng_zero_wf int_seg_wf mx_wf
Rules used in proof :  isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality functionExtensionality applyEquality int_eqEquality lambdaEquality hypothesisEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:RngSig].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  {}\mrightarrow{}  |r|].    (diagonal-matrix(r;i.F[i])  \mmember{}  Matrix(n;n;r))



Date html generated: 2018_05_21-PM-09_38_11
Last ObjectModification: 2018_01_02-PM-02_59_12

Theory : matrices


Home Index