Nuprl Lemma : diagonal-matrix_wf
∀[r:RngSig]. ∀[n:ℕ]. ∀[F:ℕn ⟶ |r|].  (diagonal-matrix(r;i.F[i]) ∈ Matrix(n;n;r))
Proof
Definitions occuring in Statement : 
diagonal-matrix: diagonal-matrix(r;x.F[x])
, 
matrix: Matrix(n;m;r)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
so_lambda: λ2x y.t[x; y]
, 
nat: ℕ
, 
diagonal-matrix: diagonal-matrix(r;x.F[x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
nat_wf, 
rng_car_wf, 
rng_zero_wf, 
int_seg_wf, 
mx_wf
Rules used in proof : 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
int_eqEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:RngSig].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  {}\mrightarrow{}  |r|].    (diagonal-matrix(r;i.F[i])  \mmember{}  Matrix(n;n;r))
Date html generated:
2018_05_21-PM-09_38_11
Last ObjectModification:
2018_01_02-PM-02_59_12
Theory : matrices
Home
Index