Nuprl Lemma : dp-perp_wf
∀[d:DualPlanePrimitives]. ∀[x,y:Vec].  ((x ⊥ y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dp-perp: (x ⊥ y), 
dp-vec: Vec, 
dual-plane-primitives: DualPlanePrimitives, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dual-plane-primitives: DualPlanePrimitives, 
record+: record+, 
record-select: r.x, 
subtype_rel: A ⊆r B, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
guard: {T}, 
prop: ℙ, 
dp-perp: (x ⊥ y), 
dp-vec: Vec
Lemmas referenced : 
subtype_rel_self, 
subtype_rel_universe1, 
dp-vec_wf, 
dual-plane-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesisEquality, 
sqequalHypSubstitution, 
dependentIntersectionElimination, 
sqequalRule, 
dependentIntersectionEqElimination, 
thin, 
hypothesis, 
applyEquality, 
tokenEquality, 
instantiate, 
extract_by_obid, 
isectElimination, 
universeEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
closedConclusion, 
axiomEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[d:DualPlanePrimitives].  \mforall{}[x,y:Vec].    ((x  \mbot{}  y)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_16-AM-11_29_24
Last ObjectModification:
2018_10_16-AM-10_36_08
Theory : matrices
Home
Index