Nuprl Lemma : matrix-det-dim0

[r:Rng]. ∀[M:Top].  (|M| 1 ∈ |r|)


Proof




Definitions occuring in Statement :  matrix-det: |M| uall: [x:A]. B[x] top: Top natural_number: $n equal: t ∈ T rng: Rng rng_one: 1 rng_car: |r|
Definitions unfolded in proof :  and: P ∧ Q rng: Rng let: let permutation-sign: permutation-sign(n;f) so_apply: x[s] top: Top so_lambda: λ2x.t[x] all: x:A. B[x] matrix-det: |M| member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf top_wf rng_one_wf rng_plus_zero int_prod0_lemma rng_lsum_nil_lemma rng_prod_empty_lemma rng_lsum_cons_lemma permutations-list-0
Rules used in proof :  because_Cache axiomEquality productElimination rename setElimination hypothesisEquality isectElimination voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[M:Top].    (|M|  =  1)



Date html generated: 2018_05_21-PM-09_35_33
Last ObjectModification: 2018_01_02-PM-01_13_19

Theory : matrices


Home Index