Nuprl Lemma : matrix-scalar-mul_wf

[r:RngSig]. ∀[k:|r|]. ∀[n,m:ℕ]. ∀[M:Matrix(n;m;r)].  (k*M ∈ Matrix(n;m;r))


Proof




Definitions occuring in Statement :  matrix-scalar-mul: k*M matrix: Matrix(n;m;r) nat: uall: [x:A]. B[x] member: t ∈ T rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  so_apply: x[s1;s2] infix_ap: y so_lambda: λ2y.t[x; y] nat: matrix-scalar-mul: k*M member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf rng_car_wf nat_wf matrix_wf int_seg_wf matrix-ap_wf rng_times_wf mx_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality applyEquality lambdaEquality hypothesisEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:RngSig].  \mforall{}[k:|r|].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[M:Matrix(n;m;r)].    (k*M  \mmember{}  Matrix(n;m;r))



Date html generated: 2018_05_21-PM-09_38_23
Last ObjectModification: 2017_12_13-PM-11_18_45

Theory : matrices


Home Index