Nuprl Lemma : zero-matrix_wf

[m,n:ℤ]. ∀[r:RngSig].  (0 ∈ Matrix(n;m;r))


Proof




Definitions occuring in Statement :  zero-matrix: 0 matrix: Matrix(n;m;r) uall: [x:A]. B[x] member: t ∈ T int: rng_sig: RngSig
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] zero-matrix: 0 member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf int_seg_wf rng_zero_wf mx_wf
Rules used in proof :  intEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality hypothesis lambdaEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[m,n:\mBbbZ{}].  \mforall{}[r:RngSig].    (0  \mmember{}  Matrix(n;m;r))



Date html generated: 2018_05_21-PM-09_34_53
Last ObjectModification: 2017_12_11-PM-00_29_34

Theory : matrices


Home Index