Nuprl Lemma : zero-matrix_wf
∀[m,n:ℤ]. ∀[r:RngSig]. (0 ∈ Matrix(n;m;r))
Proof
Definitions occuring in Statement :
zero-matrix: 0
,
matrix: Matrix(n;m;r)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
,
rng_sig: RngSig
Definitions unfolded in proof :
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
zero-matrix: 0
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
rng_sig_wf,
int_seg_wf,
rng_zero_wf,
mx_wf
Rules used in proof :
intEquality,
because_Cache,
isect_memberEquality,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
natural_numberEquality,
hypothesis,
lambdaEquality,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[m,n:\mBbbZ{}]. \mforall{}[r:RngSig]. (0 \mmember{} Matrix(n;m;r))
Date html generated:
2018_05_21-PM-09_34_53
Last ObjectModification:
2017_12_11-PM-00_29_34
Theory : matrices
Home
Index