Nuprl Lemma : deq-mFO_wf
deq-mFO() ∈ EqDecider(mFOL())
Proof
Definitions occuring in Statement : 
deq-mFO: deq-mFO(), 
mFOL: mFOL(), 
deq: EqDecider(T), 
member: t ∈ T
Definitions unfolded in proof : 
deq: EqDecider(T), 
deq-mFO: deq-mFO(), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a
Lemmas referenced : 
eq_mFO_wf, 
mFOL_wf, 
equal_wf, 
assert_wf, 
all_wf, 
iff_wf, 
assert-eq_mFO
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
applyEquality, 
productElimination, 
independent_isectElimination
Latex:
deq-mFO()  \mmember{}  EqDecider(mFOL())
 Date html generated: 
2016_05_15-PM-10_14_34
 Last ObjectModification: 
2015_12_27-PM-06_32_54
Theory : minimal-first-order-logic
Home
Index