Nuprl Lemma : assert-eq_mFO
∀[x,y:mFOL()].  uiff(↑eq_mFO(x;y);x = y ∈ mFOL())
Proof
Definitions occuring in Statement : 
eq_mFO: eq_mFO(x;y), 
mFOL: mFOL(), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
eq_mFO: eq_mFO(x;y), 
mFO-equal: mFO-equal(x), 
mFOatomic: name(vars), 
mFOL_ind: mFOL_ind, 
mFO-dest-atomic: mFO-dest-atomic, 
mFOatomic?: mFOatomic?(v), 
pi1: fst(t), 
mFOatomic-name: mFOatomic-name(v), 
pi2: snd(t), 
mFOatomic-vars: mFOatomic-vars(v), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
mFOconnect: mFOconnect(knd;left;right), 
bfalse: ff, 
assert: ↑b, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
false: False, 
mFOconnect?: mFOconnect?(v), 
not: ¬A, 
mFOquant: mFOquant(isall;var;body), 
mFOquant?: mFOquant?(v), 
guard: {T}, 
mFO-dest-connective: mFO-dest-connective, 
mFOconnect-knd: mFOconnect-knd(v), 
mFOconnect-left: mFOconnect-left(v), 
mFOconnect-right: mFOconnect-right(v), 
band: p ∧b q, 
mFO-dest-quantifier: mFO-dest-quantifier, 
mFOquant-isall: mFOquant-isall(v), 
mFOquant-var: mFOquant-var(v), 
mFOquant-body: mFOquant-body(v), 
or: P ∨ Q, 
sq_type: SQType(T), 
deq: EqDecider(T), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
true: True, 
rev_uimplies: rev_uimplies(P;Q), 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
squash: ↓T, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
mFOL-induction, 
mFOL_wf, 
uiff_wf, 
assert_wf, 
eq_mFO_wf, 
equal_wf, 
mFOatomic_wf, 
equal-wf-base-T, 
list_subtype_base, 
int_subtype_base, 
atom_subtype_base, 
istype-void, 
btrue_wf, 
mFOconnect?_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
mFOconnect_wf, 
istype-assert, 
mFOquant?_wf, 
mFOquant_wf, 
istype-int, 
bool_wf, 
list_wf, 
istype-atom, 
assert_witness, 
eq_atom_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
assert_of_eq_atom, 
list-deq_wf1, 
int-deq_wf, 
iff_transitivity, 
equal-wf-base, 
iff_weakening_uiff, 
assert_of_band, 
mFOatomic-name_wf, 
mFOatomic?_wf, 
deq_property, 
list-deq_wf, 
mFOatomic-vars_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_atom, 
mFOconnect-left_wf, 
mFOconnect-right_wf, 
assert_elim, 
mFOconnect-knd_wf, 
eq_bool_wf, 
assert_of_eq_bool, 
mFOquant-var_wf, 
mFOquant-body_wf, 
eq_int_wf, 
assert_of_eq_int, 
mFOquant-isall_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
hypothesis, 
hypothesisEquality, 
universeIsType, 
independent_functionElimination, 
lambdaFormation_alt, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
independent_isectElimination, 
because_Cache, 
inhabitedIsType, 
productElimination, 
independent_pairFormation, 
voidElimination, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
setElimination, 
rename, 
isectIsType, 
dependent_functionElimination, 
functionIsType, 
independent_pairEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
unionElimination, 
instantiate, 
cumulativity, 
productEquality, 
atomEquality, 
promote_hyp, 
hyp_replacement, 
natural_numberEquality, 
sqequalBase, 
equalityElimination, 
dependent_pairFormation_alt, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[x,y:mFOL()].    uiff(\muparrow{}eq\_mFO(x;y);x  =  y)
Date html generated:
2020_05_20-AM-09_08_18
Last ObjectModification:
2020_01_25-AM-10_46_49
Theory : minimal-first-order-logic
Home
Index