Nuprl Lemma : A-bind'_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T,S:Type].
  (A-bind'(array-model(AType)) ∈ (A-map'(array-model(AType)) T)
   ⟶ (T ⟶ (A-map'(array-model(AType)) S))
   ⟶ (A-map'(array-model(AType)) S))


Proof




Definitions occuring in Statement :  A-bind': A-bind'(AModel) A-map': A-map'(AModel) array-model: array-model(AType) array: array{i:l}(Val;n) nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T array-model: array-model(AType) A-bind': A-bind'(AModel) A-map': A-map'(AModel) pi2: snd(t) pi1: fst(t) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q prop:
Lemmas referenced :  M-bind_wf array-monad'_wf M-map_wf equal_wf array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis applyEquality lambdaEquality equalityTransitivity equalitySymmetry isectEquality universeEquality functionEquality lambdaFormation instantiate dependent_functionElimination independent_functionElimination because_Cache

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[T,S:Type].
    (A-bind'(array-model(AType))  \mmember{}  (A-map'(array-model(AType))  T)
      {}\mrightarrow{}  (T  {}\mrightarrow{}  (A-map'(array-model(AType))  S))
      {}\mrightarrow{}  (A-map'(array-model(AType))  S))



Date html generated: 2017_10_01-AM-08_44_03
Last ObjectModification: 2017_07_26-PM-04_30_05

Theory : monads


Home Index