Nuprl Lemma : A-bind'_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T,S:Type].
  (A-bind'(array-model(AType)) ∈ (A-map'(array-model(AType)) T)
   ⟶ (T ⟶ (A-map'(array-model(AType)) S))
   ⟶ (A-map'(array-model(AType)) S))
Proof
Definitions occuring in Statement : 
A-bind': A-bind'(AModel)
, 
A-map': A-map'(AModel)
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
array-model: array-model(AType)
, 
A-bind': A-bind'(AModel)
, 
A-map': A-map'(AModel)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
M-bind_wf, 
array-monad'_wf, 
M-map_wf, 
equal_wf, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
universeEquality, 
functionEquality, 
lambdaFormation, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[T,S:Type].
    (A-bind'(array-model(AType))  \mmember{}  (A-map'(array-model(AType))  T)
      {}\mrightarrow{}  (T  {}\mrightarrow{}  (A-map'(array-model(AType))  S))
      {}\mrightarrow{}  (A-map'(array-model(AType))  S))
Date html generated:
2017_10_01-AM-08_44_03
Last ObjectModification:
2017_07_26-PM-04_30_05
Theory : monads
Home
Index