Nuprl Lemma : M-rightunit
∀[Mnd:Monad]. ∀[T:Type]. ∀[m:M-map(Mnd) T].  ((M-bind(Mnd) m M-return(Mnd)) = m ∈ (M-map(Mnd) T))
Proof
Definitions occuring in Statement : 
M-bind: M-bind(Mnd)
, 
M-return: M-return(Mnd)
, 
M-map: M-map(mnd)
, 
monad: Monad
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
monad: Monad
, 
M-return: M-return(Mnd)
, 
M-bind: M-bind(Mnd)
, 
M-map: M-map(mnd)
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
M-map_wf, 
monad_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesis, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[Mnd:Monad].  \mforall{}[T:Type].  \mforall{}[m:M-map(Mnd)  T].    ((M-bind(Mnd)  m  M-return(Mnd))  =  m)
Date html generated:
2016_05_15-PM-02_16_50
Last ObjectModification:
2015_12_27-AM-08_59_22
Theory : monads
Home
Index