Nuprl Lemma : M-rightunit

[Mnd:Monad]. ∀[T:Type]. ∀[m:M-map(Mnd) T].  ((M-bind(Mnd) M-return(Mnd)) m ∈ (M-map(Mnd) T))


Proof




Definitions occuring in Statement :  M-bind: M-bind(Mnd) M-return: M-return(Mnd) M-map: M-map(mnd) monad: Monad uall: [x:A]. B[x] apply: a universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monad: Monad M-return: M-return(Mnd) M-bind: M-bind(Mnd) M-map: M-map(mnd) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  M-map_wf monad_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesis applyEquality lemma_by_obid isectElimination hypothesisEquality isect_memberEquality axiomEquality because_Cache universeEquality

Latex:
\mforall{}[Mnd:Monad].  \mforall{}[T:Type].  \mforall{}[m:M-map(Mnd)  T].    ((M-bind(Mnd)  m  M-return(Mnd))  =  m)



Date html generated: 2016_05_15-PM-02_16_50
Last ObjectModification: 2015_12_27-AM-08_59_22

Theory : monads


Home Index