Nuprl Lemma : array-model-type_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (array-model-type{i:l}(AType;Val;n) ∈ 𝕌')


Proof




Definitions occuring in Statement :  array-model-type: array-model-type{i:l}(AType;Val;n) array: array{i:l}(Val;n) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T array-model-type: array-model-type{i:l}(AType;Val;n) let: let subtype_rel: A ⊆B nat:
Lemmas referenced :  M-map_wf array-monad_wf int_seg_wf unit_wf2 array-monad'_wf Arr_wf array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality isectEquality universeEquality functionEquality cumulativity hypothesisEquality applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality because_Cache natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].    (array-model-type\{i:l\}(AType;Val;n)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_15-PM-02_18_08
Last ObjectModification: 2015_12_27-AM-08_59_01

Theory : monads


Home Index