Nuprl Lemma : fetch'-commutes
∀[Val,S:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[prog:Val ⟶ Val ⟶ (A-map'(array-model(AType)) S)].
  ∀j,k:ℕn.
    ((A-bind'(array-model(AType)) (A-fetch'(array-model(AType)) k) 
      (λval@k.(A-bind'(array-model(AType)) (A-fetch'(array-model(AType)) j) (λval@j.(prog val@k val@j)))))
    = (A-bind'(array-model(AType)) (A-fetch'(array-model(AType)) j) 
       (λval@j.(A-bind'(array-model(AType)) (A-fetch'(array-model(AType)) k) (λval@k.(prog val@k val@j)))))
    ∈ (A-map'(array-model(AType)) S))
Proof
Definitions occuring in Statement : 
A-fetch': A-fetch'(AModel)
, 
A-bind': A-bind'(AModel)
, 
A-map': A-map'(AModel)
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
array: array{i:l}(Val;n)
, 
array-model: array-model(AType)
, 
A-fetch': A-fetch'(AModel)
, 
A-bind': A-bind'(AModel)
, 
A-map': A-map'(AModel)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
idx: idx(AType)
, 
array-monad': array-monad'(AType)
, 
M-bind: M-bind(Mnd)
, 
M-map: M-map(mnd)
, 
Arr: Arr(AType)
, 
mk_monad: mk_monad(M;return;bind)
, 
nat: ℕ
, 
top: Top
Lemmas referenced : 
int_seg_wf, 
A-map'_wf, 
array_wf, 
nat_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
because_Cache, 
functionEquality, 
applyEquality, 
isect_memberEquality, 
universeEquality, 
functionExtensionality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[Val,S:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[prog:Val
                                                                                                                    {}\mrightarrow{}  Val
                                                                                                                    {}\mrightarrow{}  (A-map'(array-model(AType))  S)].
    \mforall{}j,k:\mBbbN{}n.
        ((A-bind'(array-model(AType))  (A-fetch'(array-model(AType))  k) 
            (\mlambda{}val@k.(A-bind'(array-model(AType))  (A-fetch'(array-model(AType))  j) 
                              (\mlambda{}val@j.(prog  val@k  val@j)))))
        =  (A-bind'(array-model(AType))  (A-fetch'(array-model(AType))  j) 
              (\mlambda{}val@j.(A-bind'(array-model(AType))  (A-fetch'(array-model(AType))  k) 
                                (\mlambda{}val@k.(prog  val@k  val@j))))))
Date html generated:
2018_05_21-PM-06_23_58
Last ObjectModification:
2018_05_19-PM-05_27_30
Theory : monads
Home
Index