Nuprl Lemma : fetch'-commutes

[Val,S:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[prog:Val ⟶ Val ⟶ (A-map'(array-model(AType)) S)].
  ∀j,k:ℕn.
    ((A-bind'(array-model(AType)) (A-fetch'(array-model(AType)) k) 
      val@k.(A-bind'(array-model(AType)) (A-fetch'(array-model(AType)) j) val@j.(prog val@k val@j)))))
    (A-bind'(array-model(AType)) (A-fetch'(array-model(AType)) j) 
       val@j.(A-bind'(array-model(AType)) (A-fetch'(array-model(AType)) k) val@k.(prog val@k val@j)))))
    ∈ (A-map'(array-model(AType)) S))


Proof




Definitions occuring in Statement :  A-fetch': A-fetch'(AModel) A-bind': A-bind'(AModel) A-map': A-map'(AModel) array-model: array-model(AType) array: array{i:l}(Val;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] array: array{i:l}(Val;n) array-model: array-model(AType) A-fetch': A-fetch'(AModel) A-bind': A-bind'(AModel) A-map': A-map'(AModel) pi2: snd(t) pi1: fst(t) idx: idx(AType) array-monad': array-monad'(AType) M-bind: M-bind(Mnd) M-map: M-map(mnd) Arr: Arr(AType) mk_monad: mk_monad(M;return;bind) nat: top: Top
Lemmas referenced :  int_seg_wf A-map'_wf array_wf nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule hypothesis extract_by_obid isectElimination natural_numberEquality setElimination rename hypothesisEquality lambdaEquality dependent_functionElimination axiomEquality because_Cache functionEquality applyEquality isect_memberEquality universeEquality functionExtensionality voidElimination voidEquality

Latex:
\mforall{}[Val,S:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[prog:Val
                                                                                                                    {}\mrightarrow{}  Val
                                                                                                                    {}\mrightarrow{}  (A-map'(array-model(AType))  S)].
    \mforall{}j,k:\mBbbN{}n.
        ((A-bind'(array-model(AType))  (A-fetch'(array-model(AType))  k) 
            (\mlambda{}val@k.(A-bind'(array-model(AType))  (A-fetch'(array-model(AType))  j) 
                              (\mlambda{}val@j.(prog  val@k  val@j)))))
        =  (A-bind'(array-model(AType))  (A-fetch'(array-model(AType))  j) 
              (\mlambda{}val@j.(A-bind'(array-model(AType))  (A-fetch'(array-model(AType))  k) 
                                (\mlambda{}val@k.(prog  val@k  val@j))))))



Date html generated: 2018_05_21-PM-06_23_58
Last ObjectModification: 2018_05_19-PM-05_27_30

Theory : monads


Home Index