Nuprl Lemma : fps-add-grp_wf

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  (fps-add-grp(r) ∈ AbGrp) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-add-grp: fps-add-grp(r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng abgrp: AbGrp
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-add-grp: fps-add-grp(r) subtype_rel: A ⊆B crng: CRng
Lemmas referenced :  add_grp_of_rng_wf_b fps-rng_wf crng_wf deq_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis applyEquality lambdaEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    (fps-add-grp(r)  \mmember{}  AbGrp)  supposing  valueall-type(X)



Date html generated: 2016_05_15-PM-09_48_12
Last ObjectModification: 2015_12_27-PM-04_40_44

Theory : power!series


Home Index