Nuprl Lemma : not-qle

[q,r:ℚ].  ((¬(q ≤ r))  r < q)


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s rationals: uall: [x:A]. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  false: False prop: not: ¬A uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) implies:  Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rationals_wf qless_witness istype-void qle_wf qle_complement_qorder
Rules used in proof :  isectIsTypeImplies because_Cache isect_memberEquality_alt inhabitedIsType functionIsTypeImplies independent_functionElimination dependent_functionElimination lambdaEquality_alt universeIsType functionIsType sqequalRule hypothesis independent_isectElimination productElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[q,r:\mBbbQ{}].    ((\mneg{}(q  \mleq{}  r))  {}\mRightarrow{}  r  <  q)



Date html generated: 2019_10_29-AM-07_43_47
Last ObjectModification: 2019_10_21-PM-06_22_25

Theory : rationals


Home Index