Nuprl Lemma : not-qle
∀[q,r:ℚ].  ((¬(q ≤ r)) 
⇒ r < q)
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
false: False
, 
prop: ℙ
, 
not: ¬A
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rationals_wf, 
qless_witness, 
istype-void, 
qle_wf, 
qle_complement_qorder
Rules used in proof : 
isectIsTypeImplies, 
because_Cache, 
isect_memberEquality_alt, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaEquality_alt, 
universeIsType, 
functionIsType, 
sqequalRule, 
hypothesis, 
independent_isectElimination, 
productElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[q,r:\mBbbQ{}].    ((\mneg{}(q  \mleq{}  r))  {}\mRightarrow{}  r  <  q)
Date html generated:
2019_10_29-AM-07_43_47
Last ObjectModification:
2019_10_21-PM-06_22_25
Theory : rationals
Home
Index