Step
*
1
2
1
1
1
2
of Lemma
q-not-limit-zero-diverges
1. f : ℕ ⟶ ℚ
2. ∀n:ℕ. (0 ≤ f[n])
3. q : ℚ
4. 0 < q
5. c : ∀n:ℕ. ∃m:ℕ. ((n ≤ m) ∧ (q ≤ f[m]))
6. B : ℚ
7. ∃N:ℕ. (B ≤ (N * q))
8. h : ℕ ⟶ ℕ
9. ∀n:ℕ. (n < h n ∧ (q ≤ f[h n]))
10. n : ℤ
11. 0 < n
12. ∀i:ℕn - 1. h^i + 1 0 < h^n 0
13. q ≤ f[h^n 0]
14. i : ℕn
15. ¬(i = (n - 1) ∈ ℤ)
⊢ h^i + 1 0 < h (h^n 0)
BY
{ ((Assert h^i + 1 0 < h^n 0 BY Auto) THEN (Assert h^n 0 < h (h^n 0) BY Auto) THEN Auto'⋅) }
Latex:
Latex:
1. f : \mBbbN{} {}\mrightarrow{} \mBbbQ{}
2. \mforall{}n:\mBbbN{}. (0 \mleq{} f[n])
3. q : \mBbbQ{}
4. 0 < q
5. c : \mforall{}n:\mBbbN{}. \mexists{}m:\mBbbN{}. ((n \mleq{} m) \mwedge{} (q \mleq{} f[m]))
6. B : \mBbbQ{}
7. \mexists{}N:\mBbbN{}. (B \mleq{} (N * q))
8. h : \mBbbN{} {}\mrightarrow{} \mBbbN{}
9. \mforall{}n:\mBbbN{}. (n < h n \mwedge{} (q \mleq{} f[h n]))
10. n : \mBbbZ{}
11. 0 < n
12. \mforall{}i:\mBbbN{}n - 1. h\^{}i + 1 0 < h\^{}n 0
13. q \mleq{} f[h\^{}n 0]
14. i : \mBbbN{}n
15. \mneg{}(i = (n - 1))
\mvdash{} h\^{}i + 1 0 < h (h\^{}n 0)
By
Latex:
((Assert h\^{}i + 1 0 < h\^{}n 0 BY Auto) THEN (Assert h\^{}n 0 < h (h\^{}n 0) BY Auto) THEN Auto'\mcdot{})
Home
Index