Nuprl Lemma : q-rel-lub_wf
∀[r1,r2:ℤ].  (q-rel-lub(r1;r2) ∈ ℤ)
Proof
Definitions occuring in Statement : 
q-rel-lub: q-rel-lub(r1;r2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
q-rel-lub: q-rel-lub(r1;r2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
ifthenelse_wf, 
eq_int_wf, 
band_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
intEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[r1,r2:\mBbbZ{}].    (q-rel-lub(r1;r2)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_15-PM-11_18_12
Last ObjectModification:
2015_12_27-PM-07_34_55
Theory : rationals
Home
Index