Nuprl Lemma : q_le-elim

[r,s:ℚ].  (q_le(r;s) qpositive(s -(r)) ∨bqeq(r;s))


Proof




Definitions occuring in Statement :  q_le: q_le(r;s) qpositive: qpositive(r) qmul: s qadd: s rationals: qeq: qeq(r;s) bor: p ∨bq uall: [x:A]. B[x] minus: -n natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q_le: q_le(r;s) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) qsub: s
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce because_Cache sqequalAxiom isect_memberEquality

Latex:
\mforall{}[r,s:\mBbbQ{}].    (q\_le(r;s)  \msim{}  qpositive(s  +  -(r))  \mvee{}\msubb{}qeq(r;s))



Date html generated: 2016_05_15-PM-10_40_39
Last ObjectModification: 2015_12_27-PM-07_58_16

Theory : rationals


Home Index