Nuprl Lemma : qabs-neg

[r:ℚ]. (|-(r)| |r| ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qmul: s rationals: uall: [x:A]. B[x] minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf rationals_wf qabs-qminus qmul_wf int-subtype-rationals qabs_wf iff_weakening_equal qinv_inv_q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality minusEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache

Latex:
\mforall{}[r:\mBbbQ{}].  (|-(r)|  =  |r|)



Date html generated: 2018_05_21-PM-11_53_41
Last ObjectModification: 2017_07_26-PM-06_45_45

Theory : rationals


Home Index