Nuprl Lemma : qeq-refl
Refl(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) = tt)
Proof
Definitions occuring in Statement : 
qeq: qeq(r;s)
, 
refl: Refl(T;x,y.E[x; y])
, 
int_nzero: ℤ-o
, 
b-union: A ⋃ B
, 
btrue: tt
, 
bool: 𝔹
, 
product: x:A × B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
bool_wf, 
qeq_refl, 
btrue_wf, 
iff_weakening_equal, 
b-union_wf, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
intEquality, 
productEquality
Latex:
Refl(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)
Date html generated:
2018_05_21-PM-11_43_41
Last ObjectModification:
2017_07_26-PM-06_42_55
Theory : rationals
Home
Index