Nuprl Lemma : qeq-refl

Refl(ℤ ⋃ (ℤ × ℤ-o);r,s.qeq(r;s) tt)


Proof




Definitions occuring in Statement :  qeq: qeq(r;s) refl: Refl(T;x,y.E[x; y]) int_nzero: -o b-union: A ⋃ B btrue: tt bool: 𝔹 product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T squash: T uall: [x:A]. B[x] prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf bool_wf qeq_refl btrue_wf iff_weakening_equal b-union_wf int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache intEquality productEquality

Latex:
Refl(\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{});r,s.qeq(r;s)  =  tt)



Date html generated: 2018_05_21-PM-11_43_41
Last ObjectModification: 2017_07_26-PM-06_42_55

Theory : rationals


Home Index