Nuprl Lemma : qexp2

[q:ℚ]. (q ↑ (q q) ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n qmul: s rationals: uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q subtract: m
Lemmas referenced :  equal_wf squash_wf true_wf rationals_wf exp_unroll_q less_than_wf qmul_wf iff_weakening_equal qexp1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed because_Cache independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}[q:\mBbbQ{}].  (q  \muparrow{}  2  =  (q  *  q))



Date html generated: 2018_05_22-AM-00_00_51
Last ObjectModification: 2017_07_26-PM-06_49_42

Theory : rationals


Home Index