Nuprl Lemma : qexp2
∀[q:ℚ]. (q ↑ 2 = (q * q) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qmul: r * s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
subtract: n - m
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
rationals_wf, 
exp_unroll_q, 
less_than_wf, 
qmul_wf, 
iff_weakening_equal, 
qexp1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[q:\mBbbQ{}].  (q  \muparrow{}  2  =  (q  *  q))
Date html generated:
2018_05_22-AM-00_00_51
Last ObjectModification:
2017_07_26-PM-06_49_42
Theory : rationals
Home
Index