Nuprl Lemma : qexp1

[q:ℚ]. (q ↑ q ∈ ℚ)


Proof




Definitions occuring in Statement :  qexp: r ↑ n rationals: uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q true: True so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q q-rng-nexp: q-rng-nexp(r;n) rng_nexp: e ↑n mon_nat_op: n ⋅ e mul_mon_of_rng: r↓xmn grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e qrng: <ℚ+*> rng_times: * rng_one: 1 nat_op: x(op;id) e itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y lt_int: i <j infix_ap: y subtract: m ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  uall_wf squash_wf true_wf rationals_wf equal_wf qexp-eq-q-rng-nexp false_wf le_wf iff_weakening_equal qmul_one_qrng
Rules used in proof :  cut applyEquality sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry functionEquality cumulativity universeEquality sqequalRule because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination isect_memberFormation

Latex:
\mforall{}[q:\mBbbQ{}].  (q  \muparrow{}  1  =  q)



Date html generated: 2018_05_22-AM-00_00_46
Last ObjectModification: 2017_07_26-PM-06_49_37

Theory : rationals


Home Index