Nuprl Lemma : qexp1
∀[q:ℚ]. (q ↑ 1 = q ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
true: True
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
q-rng-nexp: q-rng-nexp(r;n)
, 
rng_nexp: e ↑r n
, 
mon_nat_op: n ⋅ e
, 
mul_mon_of_rng: r↓xmn
, 
grp_op: *
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
grp_id: e
, 
qrng: <ℚ+*>
, 
rng_times: *
, 
rng_one: 1
, 
nat_op: n x(op;id) e
, 
itop: Π(op,id) lb ≤ i < ub. E[i]
, 
ycomb: Y
, 
lt_int: i <z j
, 
infix_ap: x f y
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
uall_wf, 
squash_wf, 
true_wf, 
rationals_wf, 
equal_wf, 
qexp-eq-q-rng-nexp, 
false_wf, 
le_wf, 
iff_weakening_equal, 
qmul_one_qrng
Rules used in proof : 
cut, 
applyEquality, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
sqequalRule, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
isect_memberFormation
Latex:
\mforall{}[q:\mBbbQ{}].  (q  \muparrow{}  1  =  q)
Date html generated:
2018_05_22-AM-00_00_46
Last ObjectModification:
2017_07_26-PM-06_49_37
Theory : rationals
Home
Index