Nuprl Lemma : qlf-val_wf

[n:ℕ]. ∀[lf:q-linear-form(n)]. ∀[p:ℚ^n].  (qlf-val(lf;p) ∈ ℚ)


Proof




Definitions occuring in Statement :  qlf-val: qlf-val(lf;p) q-linear-form: q-linear-form(n) qvn: ^n rationals: nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qlf-val: qlf-val(lf;p) q-linear-form: q-linear-form(n) qvn: ^n uimplies: supposing a
Lemmas referenced :  qadd_wf qdot_wf qvn_wf q-linear-form_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination setElimination rename hypothesisEquality hypothesis independent_isectElimination equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[lf:q-linear-form(n)].  \mforall{}[p:\mBbbQ{}\^{}n].    (qlf-val(lf;p)  \mmember{}  \mBbbQ{})



Date html generated: 2016_05_15-PM-11_22_39
Last ObjectModification: 2015_12_27-PM-07_31_51

Theory : rationals


Home Index