Nuprl Lemma : qlf-val_wf
∀[n:ℕ]. ∀[lf:q-linear-form(n)]. ∀[p:ℚ^n].  (qlf-val(lf;p) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qlf-val: qlf-val(lf;p)
, 
q-linear-form: q-linear-form(n)
, 
qvn: ℚ^n
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qlf-val: qlf-val(lf;p)
, 
q-linear-form: q-linear-form(n)
, 
qvn: ℚ^n
, 
uimplies: b supposing a
Lemmas referenced : 
qadd_wf, 
qdot_wf, 
qvn_wf, 
q-linear-form_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[lf:q-linear-form(n)].  \mforall{}[p:\mBbbQ{}\^{}n].    (qlf-val(lf;p)  \mmember{}  \mBbbQ{})
Date html generated:
2016_05_15-PM-11_22_39
Last ObjectModification:
2015_12_27-PM-07_31_51
Theory : rationals
Home
Index