Nuprl Lemma : qsub-zero

[r:ℚ]. ((r 0) r ∈ ℚ)


Proof




Definitions occuring in Statement :  qsub: s rationals: uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T true: True subtype_rel: A ⊆B qsub: s squash: T prop: and: P ∧ Q uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rationals_wf int-subtype-rationals equal_wf squash_wf true_wf qadd_wf qinv_id_q qadd_comm_q mon_ident_q iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis introduction extract_by_obid because_Cache hypothesisEquality natural_numberEquality applyEquality thin sqequalHypSubstitution sqequalRule lambdaEquality imageElimination isectElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination independent_isectElimination independent_functionElimination

Latex:
\mforall{}[r:\mBbbQ{}].  ((r  -  0)  =  r)



Date html generated: 2018_05_21-PM-11_51_55
Last ObjectModification: 2017_07_26-PM-06_44_46

Theory : rationals


Home Index