Nuprl Lemma : qv-lower_wf
∀[n:ℕ]. ∀[lf:q-linear-form(n)]. ∀[p:ℚ^n]. (qv-lower(lf;p) ∈ ℙ)
Proof
Definitions occuring in Statement :
qv-lower: qv-lower(lf;p)
,
q-linear-form: q-linear-form(n)
,
qvn: ℚ^n
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
qv-lower: qv-lower(lf;p)
,
q-linear-form: q-linear-form(n)
,
qvn: ℚ^n
,
uimplies: b supposing a
Lemmas referenced :
qle_wf,
qdot_wf,
qvn_wf,
q-linear-form_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
productElimination,
thin,
lemma_by_obid,
isectElimination,
setElimination,
rename,
hypothesisEquality,
hypothesis,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
axiomEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[lf:q-linear-form(n)]. \mforall{}[p:\mBbbQ{}\^{}n]. (qv-lower(lf;p) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-11_22_16
Last ObjectModification:
2015_12_27-PM-07_32_13
Theory : rationals
Home
Index