Nuprl Lemma : test33

[a,b,c:ℚ].  (b c < c) supposing (c < and a < b)


Proof




Definitions occuring in Statement :  qless: r < s qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q true: True squash: T guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  iff_weakening_equal qmul_comm_qrng true_wf squash_wf qmul_reverses_qless rationals_wf int-subtype-rationals qless_wf qmul_wf qless_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination natural_numberEquality applyEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination productElimination lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (b  *  c  <  a  *  c)  supposing  (c  <  0  and  a  <  b)



Date html generated: 2016_05_15-PM-10_59_52
Last ObjectModification: 2016_01_16-PM-09_31_49

Theory : rationals


Home Index