Nuprl Lemma : cat_comp_wf

[C:SmallCategory]. ∀[x,y,z:cat-ob(C)]. ∀[f:cat-arrow(C) y]. ∀[g:cat-arrow(C) z].  (g f ∈ cat-arrow(C) z)


Proof




Definitions occuring in Statement :  cat_comp: f cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cat_comp: f
Lemmas referenced :  cat-comp_wf cat-arrow_wf cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y,z:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].  \mforall{}[g:cat-arrow(C)  y  z].
    (g  o  f  \mmember{}  cat-arrow(C)  x  z)



Date html generated: 2020_05_20-AM-07_49_40
Last ObjectModification: 2017_01_17-PM-00_37_14

Theory : small!categories


Home Index