Nuprl Lemma : cat_comp_wf
∀[C:SmallCategory]. ∀[x,y,z:cat-ob(C)]. ∀[f:cat-arrow(C) x y]. ∀[g:cat-arrow(C) y z].  (g o f ∈ cat-arrow(C) x z)
Proof
Definitions occuring in Statement : 
cat_comp: g o f
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cat_comp: g o f
Lemmas referenced : 
cat-comp_wf, 
cat-arrow_wf, 
cat-ob_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y,z:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].  \mforall{}[g:cat-arrow(C)  y  z].
    (g  o  f  \mmember{}  cat-arrow(C)  x  z)
Date html generated:
2020_05_20-AM-07_49_40
Last ObjectModification:
2017_01_17-PM-00_37_14
Theory : small!categories
Home
Index